LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - APRIL 2013
PH 1813 - ELECTRONICS

Date : 30/04/2013
Time : 9:00-12:00

Part - A

Answer ALL Questions.

1. Explain the concept of the virtual ground in an Op-amp.
2. With a neat circuit diagram obtain the expression for the output for an Op-amp based inverting amplifier.
3. Explain the function of DAD instruction of $\mu \mathrm{P} 8085$.
4. Develop a program segment for $\mu \mathrm{P} 8085$ to evaluate the square root of a number stored in memory.
5. Illustrate with a suitable example the stack activity of $\mu \mathrm{P} 8085$ during a CALL instruction.
6. Develop a macro for $\mu \mathrm{P} 8085$ which stores in A , the square root of the number in B .
7. Write notes on the ALE signal of $\mu \mathrm{P} 8085$.
8. Develop a program segment for $\mu \mathrm{P} 8085$ to mask RST4.5 and RST6.5.
9. Write a note on the R register of $\mu \mathrm{P}$ Z80.
10. Explain the use of the alternate registers of $\mu \mathrm{P} \mathbf{Z 8 0}$.
Part - B

Answer any FOUR Questions.
11. Sketch a neat circuit diagram of an Op-amp based 4 bits binary weighted ladder D/A converter and explain it's working in detail.
12. With a neat diagram, explain in detail the internal architecture of $\mu \mathrm{P} 8085$.
13. Develop a program for $\mu \mathrm{P} 8085$ to find the largest of an array of n bytes in memory.
14. If the crystal frequency is 1 MHz , develop a program for $\mu \mathrm{P} 8085$ to generate a square wave at 2 KHz in the SOD line.
15. Write a note on the various branch instructions available in μ PZ80.

Part - C

Answer any FOUR Questions.
16. With a neat circuit diagram, explain how Op-amps may be used to solve the equations, $x+y$ $=2$ and $x-y=0.5$.
17. Develop a program for $\mu \mathrm{P} 8085$ to solve $a!+b!-c$! with a subroutine for calculating the factorial.
18. Eight LEDs are connected to an output port PA and a switch to the LSB of an input port PB. Develop an ASM program for $\mu \mathrm{P} 8085$ to make the LEDs glow in binary ascending order if the switch is ON else make alternate LEDs blink.
19. Develop an interface and program for $\mu \mathrm{P} 8085$ to implement an 8 bits counter based A / D conversion.
20. Develop programs for $Z 80$ to input from a port PA, 80 bytes and store them in consecutive memory locations (i) using block manipulating instructions and (ii) without using block manipulating instructions.

